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1 Summary

The increasing complexity of current uninhabited aerial vehicle (UAV) missions is overwhelming

human mission developers, and automated mission planning systems and simulation environ-

ments. The objective of the project we carried out under our EOARD grant was to enhance

the dependability of complex UAV missions with the application of modern automated program

analysis techniques. The key insight supporting this project was the treatment of a mission plan

as a type of software or software representation, which could be analyzed with software verifica-

tion methods—including model checking and probabilistic model checking—to detect potential

errors before mission execution.

Model checking is an established formal method for verifying the desired behavioral proper-

ties of system models. But popular model checkers tend to support low-level modeling languages

that require intricate models to represent even the simplest systems. Modeling complexity arises

in part from the need to encode domain knowledge—including domain objects and concepts,

and their relationships—at relatively low levels of abstraction. Our research demonstrates that,

once formalized, domain knowledge can be reused to enhance the abstraction level of model and

property specifications, and the effectiveness of probabilistic model checking.

A refereed conference paper, which was accepted for publication by the 9th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC/FSE 2013), describes a novel method for domain-

specific model checking called cascading verification. The method uses composite reasoning over

high-level system specifications and formalized domain knowledge to synthesize both low-level

system models and the behavioral properties that need to be verified with respect to those

models. In particular, model builders use a high-level domain-specific language (DSL) to encode

system specifications that can be analyzed with model checking. Domain knowledge is encoded

in the Web Ontology Language (OWL), the Semantic Web Rule Language (SWRL) and Prolog,

which are combined to overcome their individual limitations. Synthesized models and properties

are analyzed with the probabilistic model checker PRISM. Cascading verification is illustrated

with a prototype system that verifies the correctness of UAV mission plans. An evaluation of this

prototype reveals non-trivial reductions in the size and complexity of input system specifications

compared to the artifacts synthesized for PRISM.

The remainder of this report describes the work accomplished in the three years of the

project—including cascading verification and its application to the analysis of complex UAV

missions. Research was funded by the Air Force Office of Scientific Research and the European

Office of Aerospace Research & Development. The sudden arrival of the grant in January 2010

and the difficulty in recruiting an able Ph.D. student for the grant (Fokion Zervoudakis) meant

that the work described here began in earnest in July 2010. This led us to request a six-month

no-cost extension to the grant, which was approved. The project involved collaboration between

Fokion Zervoudakis at University College London (UCL), David S. Rosenblum at the National

University of Singapore (NUS), and Sebastian Elbaum at the University of Nebraska-Lincoln
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(UNL), who was funded separately under a grant from AFOSR.

2 Introduction

Model checking is an established formal verification method whereby a model checker systemati-

cally explores the state space of a system model to verify that each state satisfies a set of desired

behavioral properties [1].

Research in model checking has focused on enhancing the efficiency and scalability of verifi-

cation by employing partial order reduction, and by exploiting symmetries and other state space

properties. This research is important because it mitigates the complexity of model checking

algorithms, thereby enabling model builders to verify larger, more elaborate models. But the

complexity associated with model and property specification has yet to be sufficiently addressed.

Popular model checkers tend to support low-level modeling languages that require intricate mod-

els to represent even the simplest systems. For example, PROMELA—a language used by the

model checker Spin—is essentially a dialect of the relatively low-level programming language C.

Another example is the modeling language used by the probabilistic model checker PRISM. Due

to lack of appropriate control structures, the PRISM language forces model builders to pol-

lute model components with variables that act as counters. These variables are manipulated at

runtime to achieve desirable control flow from otherwise unordered commands.

Modeling complexity arises in part from the need to encode domain knowledge—including

domain objects and concepts, and their relationships—at relatively low levels of abstraction.

We will demonstrate that, once formalized, domain knowledge can be reused to enhance the

abstraction level of model and property specifications, and the effectiveness of probabilistic model

checking.

Leveraged appropriately, formal domain knowledge can decrease specification and verifica-

tion costs. On the verification side, the model checking framework Bogor achieves significant

state space reductions in model checking of program code by exploiting characteristics of the

program code’s deployment platform [2]. On the specification side, semantic model checking

supplements model checking with semantic reasoning over domain knowledge encoded in the

Web Ontology Language (OWL). Semantic model checking has been used to verify Web ser-

vices [3, 4]; Web service security requirements [5]; probabilistic Web services [6]; Web service

interaction protocols [7]; and Web service flow [8]. Additionally, multi-agent model checking has

been used to verify OWL-S process models [9].

OWL is a powerful knowledge representation formalism, but expressive and reasoning lim-

itations constrain its utility in the context of semantic model checking; for example, OWL can-

not reason about triangular or self-referential relationships. The Semantic Web Rule Language

(SWRL)—a W3C-approved OWL extension—addresses some of these limitations by integrating

OWL with Horn-like rules. But, like OWL, SWRL cannot reason effectively with negation. The

logic programming (LP) language Prolog can be used to overcome problems that are intractable
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in OWL+SWRL. Prolog, however, lacks several of the expressive features afforded by OWL,

including support for equivalence and disjointness.

We have designed a novel method for domain-specific model checking called cascading ver-

ification [10]. Our method uses composite reasoning over high-level system specifications and

formalized domain knowledge to synthesize both low-level system models and the behavioral

properties that need to be verified with respect to those models. In particular, model builders

use a high-level domain-specific language (DSL) to encode system specifications that can be an-

alyzed with model checking. A compiler uses automated reasoning to verify the consistency of

each specification with respect to domain knowledge encoded in OWL+SWRL and Prolog, which

are combined to overcome their individual limitations. If consistency is deduced, then explicit

and inferred domain knowledge is used by the compiler to synthesize both a discrete-time Markov

chain (DTMC) model and probabilistic computation tree logic (PCTL) properties from template

code. PRISM subsequently verifies the model against the properties. Thus, verification cascades

through several stages of reasoning and analysis.

Our method gains significant functionality from each of its constituent technologies. OWL

supports expressive knowledge representation and efficient reasoning; SWRL extends OWL with

Horn-like rules that can model complex relational structures and self-referential relationships;

Prolog extends OWL+SWRL with the ability to reason effectively with negation; DTMC intro-

duces the ability to formalize probabilistic behavior; and PCTL supports the elegant expression

of probabilistic properties.

Cascading verification is illustrated with a prototype system that verifies the correctness of

uninhabited aerial vehicle (UAV) mission plans. We used this prototype to analyze 58 mission

plans, which were based on real-world mission scenarios developed independently by DARPA [11]

and the Defense Research and Development Canada (DRDC) agency [12]. As an implementation

of cascading verification, our prototype realized a non-trivial reduction in the effort required to

specify system models and behavioral properties. For example, from 23 lines of YAML code

comprising 92 tokens, cascading verification synthesized 104 lines of PRISM code comprising

744 tokens and three behavioral properties (with our prototype, model builders encode mission

specifications in a domain-specific dialect of the human-readable YAML format [13]).

3 Methods, Assumptions and Procedures

The problem outlined in the previous section cannot be addressed with a single technology.

Our solution was to develop a method that integrates OWL+SWRL, Prolog and DTMC and

PCTL. OWL was chosen because it is an established knowledge representation formalism, and

the ontology specification language recommended by the W3C [14]. OWL limitations motivate

several contending extensions, including SWRL, CARIN, AL-log, DL-safe rules, DL+log, and

many others [15]. Hybrid knowledge representation systems that integrate OWL+SWRL and

Prolog have also been proposed [16, 17]. We chose to address OWL limitations with SWRL and
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Figure 1: A high-level, domain-agnostic schematic of our method and prototype. Rectangular and
oval shapes represent data and processes, respectively; bold and normal text distinguishes, respectively,
method from prototype; and underlined text represents our research contributions with respect to the
UAV domain.

Prolog; the former is an OWL extension approved by the W3C, while the latter is one of the

most prominent logic-based knowledge representation languages.

Probabilistic model checking is supported by various software tools including ProbVerus

and FMurϕ, which analyze DTMC models; and ETMCC, MRMC (the successor of ETMCC),

LiQuor and Rapture, which analyze Markov decision process (MDP) models [1]. But PRISM is,

in our opinion, preferable because it supports both model types, thereby extending the potential

of our method and prototype. PRISM also supports PCTL, a formalism that can express a large

class of properties in an elegant manner.

3.1 Method Overview

Figure 1 illustrates a high-level, domain-agnostic schematic of our method and prototype. Do-

main experts, which are the method’s primary stakeholders, use OWL to define domain concepts

and their relationships; SWRL and Prolog to define rules; and PRISM’s modeling and property

specification languages to define, respectively, DTMC and PCTL templates. Model builders—

also primary stakeholders—use a high-level DSL to encode system specifications that can be

analyzed with model checking. We note that domain knowledge is formalized once and subse-

quently reused to support the verification of multiple system specifications.

3.2 An Example Mission

With our prototype, model builders use a domain-specific YAML dialect to encode mission plans

comprising UAV assets and the action workflows assigned to those assets. The YAML code in

Listing 1 specifies Mission A, an example mission that is representative of the 58 mission plans

developed for this project.

Listing 1: YAML code for Mission A

6
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1Action:

2TraversePathSegmentAction:

3- id: TPSA1

4duration: 60

5coordinates: [ -118.27017 , 34.04572 ,

6-118.27279 , 34.04284]

7- id: TPSA2

8duration: 60

9coordinates: [ -118.2739 , 34.03928]

10preconditions: [TPSA1 , TPSA3]

11- id: TPSA3

12duration: 60

13coordinates: [ -118.26482 , 34.03332 ,

14-118.27383 , 34.03824]

15- id: TPSA4

16duration: 60

17coordinates: [ -118.28204 , 34.0376]

18preconditions: [TPSA3]

19PhotoSurveillanceAction:

20- id: PSA5

21duration: 50

22preconditions: [TPSA3]

23Asset:

24Hummingbird:

25- id: H1

26actions: [TPSA1 , TPSA2]

27- id: H2

28actions: [TPSA3 , TPSA4 , PSA5]

Mission A comprises two Hummingbird assets (lines 24–28 in Listing 1); a single photo

surveillance action (lines 19–22), which is a type of sensor action; and four path segment traversal

actions (lines 2–18), which are kinetic actions. A path segment traversal action instructs the

executing UAV to traverse a path between two waypoints. For each such action, the latitudes

and longitudes of the delineating waypoints are stored in an array and indexed in succession; in

other words, the latitude of waypoint one is followed by the longitude of waypoint one, which is

in turn followed by the latitude of waypoint two, etc. We note that the end coordinates of an

action a constitute the start coordinates of an action b if a precedes b, and both a and b are

assigned to the same asset; for example, the end coordinates of action TPSA1 (line 6) constitute

the implied start coordinates of action TPSA2, which succeeds TPSA1 in the sequence of kinetic

actions assigned to asset H1.

3.3 From Specification to Verification

For any given mission specification, a cascading verification compiler (CVC) synthesizes both

the DTMC and PCTL artifacts corresponding to that specification. Artifacts are synthesized as
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follows:

1. Mission specifications encoded in YAML are transformed by the CVC into ABox asser-

tions. During this preprocessing phase, the CVC uses geographic coordinates from mission

specifications, and data (pertaining to operational environments) from external sources, to

perform geodetic calculations.1 The equations that support these calculations are hard-

coded in the CVC; for example, the compiler comprises geodesic equations that establish the

occurrence, and calculate the duration, of threat area incursions committed by UAVs. Ge-

ographic information resulting from preprocessing is integrated with the generated ABox.

2. Pellet—a sound and complete OWL reasoner [18]—verifies the consistency of the gener-

ated ABox with respect to the TBox defined by domain experts. In doing so, the reasoner

ensures that mission constructs encoded in YAML are consistent with OWL+SWRL ax-

ioms. Inconsistencies signify an invalid mission specification, which causes the compilation

process to terminate with an error. If consistency is deduced, then the reasoner proceeds

to generate inferences from explicitly encoded domain knowledge; for example, if geodetic

calculations establish the occurrence of a threat area incursion, then the asset committing

that incursion is inferred to be a threatened asset.

3. Inferred ontological knowledge is transformed by the CVC into Prolog facts. The com-

piler for SWI-Prolog—an open source Prolog implementation [19]—inputs the generated

fact-base and the Prolog rule-base defined by domain experts, and proceeds to generate

inferences; for example, the last kinetic action in an action workflow is inferred to be a

default terminal action. The CVC uses Prolog inferences, in conjunction with explicit and

inferred ontological knowledge, to synthesize DTMC and PCTL artifacts from predefined

templates.

PRISM inputs the synthesized artifacts, verifies the system model against its desired behav-

ioral properties, and returns logical and probabilistic results from the verification. If the results

are deemed acceptable by the model builder(s), then the mission can be scheduled for real-world

execution (via some process that is outside the scope of our method).

4 Results and Discussion

We assert that by enhancing the abstraction level of model and property specifications, cascading

verification also enhances the effectiveness of probabilistic model checking. This assertion is

validated with a prototype implementation of cascading verification for the UAV domain. The

prototype benefits mission developers by simplifying the verification of UAV mission plans, and

by augmenting PRISM’s verification capabilities. Ultimately, our prototype benefits mission

developers by improving the correctness of UAV mission specifications.

1Geodetics is a branch of applied mathematics that deals with the size and shape of the Earth.
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4.1 Abstraction

Because it was unfeasible to involve practitioners in the evaluation of our prototype’s utility,

we opted instead for a metrics-based analysis of 58 mission plans. These plans were based

on real-world mission scenarios developed independently by DARPA and DRDC [11, 12]. We

evaluated our approach by comparing the lines of code (LOC) and numbers of lexical tokens

required to specify missions in YAML, against the LOC and tokens in the combined DTMC

and PCTL code synthesized by the CVC. On average, our prototype synthesizes PRISM code

that is 3.127 and 4.490 times greater than the size of the YAML input with regard to LOC

and tokens, respectively. (The standard deviations were 52.4% and 95.4%, respectively.) These

results demonstrate a non-trivial reduction in the effort required to produce mission models and

properties.

We observe that tactical missions generate more LOC and tokens than standalone mission

plans, which are mission plans not associated with the more specialized tactical subdomain.

Specifically, tactical mission plans generate PRISM code that is on average 3.933 and 5.992

times greater than the size of the YAML input with regard to LOC and tokens, respectively.

(The standard deviations were 24.0% and 59.2%, respectively.) Because the effort required to

synthesize PRISM code is proportional to the effort required to synthesize the LOC and tokens

that constitute the code, tactical mission plans result in added value for mission developers.

This observation suggests that, with respect to standalone and tactical missions, the utility of

our prototype is proportional to the threat level associated with any given mission plan. More

broadly, increased LOC and token output suggests that the utility of cascading verification may

be proportional to the amount of automated reasoning required to synthesize pertinent artifacts,

a conclusion that justifies our motivation to augment model checking with formalized domain

knowledge.

4.2 Effectiveness

Because it cannot account for the intricate syntax of the PRISM language, a LOC- and token-

based analysis offers limited insight into the inherent complexity of model and property specifi-

cations. We investigated complexity further by considering behavioral modeling errors specific to

the PRISM language that can be eliminated by the automated synthesis of PRISM artifacts (at

least with respect to the segment of the mission space that we have investigated thus far) [10].

These errors are significant—perhaps more so than the errors uncovered during the model check-

ing process—because they can mislead mission developers by causing PRISM to verify erroneous

mission plans.

We also identified 28 mission specification errors, across six error classes, that impact the

correctness of UAV missions and are beyond the scope of PRISM’s verification capabilities. These

errors are detected by either Pellet or the SWI-Prolog compiler during the synthesis process.

Mission correctness can clearly be compromised by mission specification and behavioral
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modeling errors, which occur during the design/implementation and verification phases, respec-

tively, of the mission development process. Our prototype augments PRISM’s effectiveness by

preventing both of these error types.

4.3 Probabilistic Verification

We also considered PRISM’s ability to meaningfully verify UAV mission plans (or rather, the

utility of the DTMC and PCTL artifacts synthesized by our prototype). For this part of the

evaluation, eighteen of the 58 mission plans described above were seeded with errors—including

deadlock and non-reachable states—that violated desirable behavioral properties. One mission

plan failed (i.e., contained errors that resulted in a 0.0 probability of success) because of an

unacceptably low RAF value; nine mission plans failed because kinetic or sensor action workflow

durations exceeded the endurances of the assets to which those workflows were assigned; and

eight mission plans contained action workflow errors that resulted in deadlock. These errors were

successfully identified by our prototype. While the correctness of some mission plans was absolute

(with a 0.0 or 1.0 probability of success) several mission plans, including plans comprising threat

area incursions, were associated with variable probabilities of success.

4.4 Discussion

By automating the synthesis of PRISM artifacts, and by providing multiple stages of reasoning

and analysis, our prototype enhances the abstraction level of model and property specifications,

and the effectiveness of probabilistic model checking, respectively. This cascading approach

to verification improves mission correctness to a degree that is evidently unattainable by the

individual components that constitute the prototype.

We note that the evaluation presented in this section is preliminary. Further work is re-

quired to determine the utility of our prototype in the context of a more sophisticated mission

specification language and domain model.

5 Outputs from the Project

The research outlined in this report was the outcome of collaborative research. David Rosenblum

and Fokion Zervoudakis have visited the University of Nebraska-Lincoln during the course of the

project. The outcome of our research was a refereed conference paper, which was accepted for

publication by the 9th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2013). In

addition, Fokion Zervoudakis, the Ph.D. student who trained under the project, is expected to

submit his thesis to the Department of Computer Science at University College London (UCL)

in September-October 2013.
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6 Conclusions

We have identified several promising directions for future work. Composite CVC inferences are

currently unidirectional, with Prolog facts derived from knowledge encoded in OWL+SWRL.

While conceptually and practically appealing, this pipeline architecture constrains the reasoning

process from refining Prolog inferences with ontological knowledge, and increases the potential

for knowledge duplication. We aim to address these limitations by developing a knowledge

representation framework that can support more flexible, iterative reasoning.

A second issue pertains to the artifacts that constitute the CVC knowledge base, including

the ontology, the Prolog rule-base, and the DTMC and PCTL templates. These artifacts should

be extensible to reflect changes in domain knowledge. Extensions should in turn be verifiable to

ensure that domain knowledge remains consistent across the entire knowledge base. This require-

ment provides impetus for the development of a mechanism that will automate the consistency

management process.

We also intend to further the evaluation of our method and prototype by enhancing the

sophistication of the mission specification language and domain model presented in this report.

We expect a more robust evaluation process to facilitate the abstraction, and formal specification,

of the connections that link different technologies in the context of our method. If formalized,

these connections would support the consistency management process described above.

6.1 Network-Centric Operations

Network-Centric Operations (NCO) is a military doctrine that aims to improve the efficiency

and effectiveness of U.S. combat operations by leveraging information technology [20]. NCO

is underpinned in part by contemporary socio-technological advancements, and enabled by a

high-performance information grid; access to appropriate information sources; weapons reach

and maneuver with precision and speed of response; command-and-control (C2) processes that

support high-speed assignment of resources to need; and integrated sensor grids that are closely

coupled to C2 processes and shooters [21]. When combined, these elements support speed of

command, the process by which a superior information position is turned into a competitive

advantage. Speed of command can be substantially enhanced when command-and-control pro-

cesses are automated. Enhanced speed of command accelerates the observe, orient, decide and

act (OODA) loop, which denies the enemy operational pause. Regaining this time amplifies the

effects associated with speed of command, resulting in an accelerated rate of change that leads

to enemy lock-out.

By automating the organization and utilization of military knowledge, Semantic Web tech-

nologies could support the verification and deployment of mission plans comprising asset con-

figurations derived from real-time operational data, including asset location, fuel and weapon

statuses. The near real-time coupling of mission verification and deployment has the potential to

support a near real-time OODA loop. But the command-and-control process resulting from this
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coupling will inevitably be susceptible to network and processing speed latencies. Addressing

the impact of latency on mission dependability in the context of NCO constitutes an interesting

research direction.
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